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Abstract—The efficient exploitation of renewable energy
sources is crucial for addressing the global energy crisis and
increase in CO; emissions. Energy management system aggrega-
tors, functioning as nonprofit cooperatives within energy commu-
nities, manage renewable energy resources and incentivize resi-
dents towards self-consumption through dynamic, cost-attractive
pricing schemes, receiving subsidies and long-term contracts
as reward. This interaction between aggregator and residents
is typically modeled using bi-level optimization frameworks,
however, research studies often ignore the role of aggregators
as self-consumption catalysts and the conflicting nature of the
residents’ objectives. Moreover, lack of cooperation between the
decision levels results in inflexible decision making when priori-
tizing between the respective objectives. This paper defines and
formulates a bi-level multi-objective optimization problem for
optimizing self-consumption in energy communities, while con-
sidering the residents’ welfare by maximizing satisfaction of their
appliance-scheduling preferences and minimizing energy costs.
We introduce the Bi-level Multi-Objective Energy Management
System II (BiMO-EMS-II), composed of an Adaptive Population
Transfer strategy, a Uniform Partially Mapped Crossover and a
Decision Making heuristic with Cooperation. Our experimental
evaluation has shown that BiMO-EMS-II simultaneously offers
near-optimal self-consumption at the aggregator level and a high-
quality trade-off between the conflicting objectives at the resident
level, subject to different objective prioritization and decision-
making assumptions.

Index Terms—bi-level optimization, evolutionary multi-
objective optimization, self-consumption, evolutionary transfer
optimization, multi-criteria decision making.

I. INTRODUCTION
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N an attempt to reduce the C'O, emissions caused due

to grid electricity consumption®, the European Green Deal
advocates for efficient electrical energy usage at all levels of
the ecosystem. At the most foundational level, such as homes,
apartment blocks and commonly inhabited spaces,
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Fig. 1: Aggregator offers energy price-signal incentives, which affect
the residents’ appliance-scheduling decisions and consequently the
overall communal self-consumption.

energy efficiency is primarily achieved by harnessing self-
generated renewable energy (RE) (e.g., solar energy from
photovoltaic PV cells), a practice commonly known as self-
consumption. Self-consumption entails reduced reliance on the
grid, consequently maximizing the utilization of RE at the
production site to satisfy energy needs and minimizing the
energy demand from C'Oz-emitting fossil sources [1].

Energy Management System Aggregators (EMSA) play a
crucial role [2] in supporting the cooperation between different
levels of the energy management ecosystem towards achieving
energy efficiency. They provide Demand-Response (DR) and
Ancillary Services to Distribution System Operators (DSO)
through Demand-Side Management (DSM) programs [3], in
order to address the DSO energy flexibility requests [4],
with profit maximization being their goal. These programs
assess the consumption patterns of the residents and leverage
their energy flexibility, incentivizing their cooperation as key
stakeholders through benefits such as reduced energy costs or
monetary compensation for altering their preferred appliance-
scheduling [3]. Alternatively, EMSAs also act as local non-
profit cooperatives to energy communities by managing their
RE and incentivizing self-consumption through dynamic pric-
ing schemes, receiving subsidies or long-term contracts by
the EU/government as rewards [5]. With more than 2400 RE
cooperatives across Europe [5], and given the growing capacity
of prosumers (end-users with RE production capabilities) to
facilitate self-consumption, DSM programs focused on self-
consumption gain significance.

The bi-directional interaction between the aggregator and
resident decision levels has been investigated within the
framework of non-cooperative Stackelberg games [6], with
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existing approaches predominantly employing bi-level linear
programming strategies [7], [8]. Furthermore, the existence
of conflicting objectives at the resident decision level, such
as preference satisfaction maximization and energy costs
minimization, embolden the utilization of evolutionary bi-
level multi-objective optimization (EBLMO) approaches [9].
However, existing approaches often ignore the role of ag-
gregators as self-consumption catalysts and the conflicting
nature of the residents’ objectives. Moreover, the lack of
cooperation between the decision levels results in inflexible
decision making when prioritizing between the respective
objectives. For instance, prioritization of cost-minimization
is more attractive for self-invested communities whose cost-
averse residents seek to recover their investment, and prior-
itization of self-consumption maximization is more suitable
for cost-indifferent residents and communities aimed at energy
self-sufficiency [10]. In addition, although effective, EBLMO
approaches, and especially nested optimization approaches,
typically suffer from being computationally expensive [9].

An effective way to increase the performance of EBLMO
approaches, in terms of both accuracy and execution time, is by
employing a Knowledge-Transfer strategy, where knowledge
gained from previously-evaluated solution(s) is utilized in dif-
ferent ways [11]-[14] to aid in the evaluation of new solutions.
However, existing Knowledge-Transfer strategies [12], [13]
insufficiently examine the appropriate amount of knowledge
transfer or the appropriate distribution of transferred knowl-
edge in the search space. Additionally, the utilization of these
strategies is advised [13] when computational resources are
limited, otherwise their effectiveness decreases.

In our previous work [15], we introduced a bi-level
multi-objective problem (BMOP) for aggregator participa-
tion in the day-ahead energy market that aims at optimiz-
ing self-consumption in collective self-consumption commu-
nities [10] (communities that share a RE source), while con-
sidering the residents’ welfare by maximizing satisfaction of
their appliance-scheduling preferences and minimizing energy
costs. As illustrated in Fig. 1, we leveraged the connec-
tion between the decision levels through the Bi-level Multi-
Objective Energy Management System (BiMO-EMS) for self-
consumption optimization. This framework suffers from three
major limitations: (i) energy flexibility is only achievable
through load curtailment/reduction, which significantly limits
its utilization potential in optimizing self-consumption, (ii)
the system is inefficient in terms of execution time, and
(iii) the proposed optimistic decision-making model, which
assumes that EMSASs anticipate the behavior of end-users to
their advantage, overlooks the unpredictability of end-users as
decision-makers, who may prioritize preference satisfaction or
cost savings to the detriment of maximizing self-consumption.

In this paper, we extend our work in [15] by proposing a
BMOP that supports load shifting, and introduce a bi-level
multi-objective optimization framework, coined BiMO-EMS-
II, composed of three (3) new components: (i) a novel Adap-
tive Population Transfer strategy for optimized exploitation of
acquired knowledge, (ii) an adapted Uniform Partially Mapped
Crossover operator for maximal exploitation of energy flexi-
bility, and (iii) a novel Decision Making heuristic with Co-

operation for supporting decision-making with regards to the
prioritization between objectives under different assumptions.
Specifically, our contributions are as follows.

1) We propose a BMOP that enables appliance-scheduling
subject to load shifting in addition to load curtailment,
thus allowing for maximal utilization of energy flexibility
and increasing the optimization potential at both decision
levels.

2) We propose a Knowledge-Transfer strategy for
decomposition-based EBLMO approaches, inspired
by SPT [13], coined Adaptive Population Transfer
(APT), that utilizes weight vector A to selectively-
transfer solutions and achieve an optimized balance
between exploration and the exploitation of acquired
knowledge. Contrary to SPT, APT is shown to work
best when high computational resources are available,
offering competitive solution quality and faster execution
time.

3) We deploy an adapted Uniform Partially Mapped
Crossover (UPMX) for metaheuristics with order-based
permutation chromosomes, inspired by the original
PMX [16], that optimizes the required (due to load
shifting) mapping between appliance usages and resident
scheduling-preferences for maximal exploitation of en-
ergy flexibility.

4) We define a generalizable framework for Decision Mak-
ing with Cooperation (DMC) between the upper-level
(UL) and lower-level (LL) entities in BLMOPs which
supports the following approaches: i) optimistic, (ii)
pessimistic, (iii) a “resident-aware” approach subject to
the community-level residents’ profile, (iv) a fixed-coop
approach that assumes a specified level of cooperation
by the LL decision-makers, and (v) a dynamic-coop ap-
proach that allows dynamically-tuning cooperation based
on a concept of trade-off fairness, aspiring for a balanced
trade-off between self-consumption maximization and
resident convenience. A sensitivity analysis on the gap in
performance (with regards to both UL and LL objectives)
between all approaches is presented.

5) The proposed Bi-level Multi-Objective Energy Manage-
ment System Il (BiMO-EMS-1I), composed of APT,
UPMX and DMC, is evaluated on realistic resident-
preference datasets derived from appliance-usage patterns
and solar energy production datasets. Our experimental
evaluation has demonstrated that BiMO-EMS-II achieves
near-optimal self-consumption at the aggregator level and
a high-quality trade-off between the conflicting objectives
at the resident level, while also being capable of offering
a variety of attractive solution trade-offs based on diverse
objective prioritization and decision-making assumptions.

The remainder of this paper is organized as follows: Section II
discusses related work. Section III presents the system model,
problem definition and formulation. BiMO-EMS-II is ex-
plained in section IV, along with DMC, APT and UPMX. The
experimental setting and evaluation are presented in sections V
and VI, respectively. Section VII concludes the paper.
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II. RELATED WORK
A. Energy Flexibility and Bi-level EMSA Models

Energy flexibility is defined as the amount of load that
can be shifted, reduced or curtailed towards achieving energy-
management objectives. The exploitation of energy flexibil-
ity in energy communities is handled by EMSAs and the
deployment of the decided load-operation schedule is often
being automatically handled by home and building energy
management systems (HEMS/BEMS) [17]. A well-established
model for citizen-led energy communities is the “energy
cooperatives” model [5], in which the residents voluntarily
participate as economic stakeholders and the EMSAs act as
local for-profit or nonprofit cooperatives. In the latter scenario,
the EMSAs manage the community’s RE supply and define
billing conditions in order to incentivize self-consumption and
promote energy self-sufficiency. From an economic point of
view, the EMSAs receive subsidies or long-term contracts by
the EU/government as reward, while the residents benefit from
reduced energy costs, due to energy self-sufficiency.

Bi-level approaches are attractive in exploiting the relation-
ship between interdependent decision levels, such as those that
aggregator and residents operate on [6]: by optimally solving
the LL parameterized problem before attending to the UL
problem, they result in trade-offs between objectives that are
desirable by both entities, given their adversarial/cooperative
relationship. Antunes and Alves have developed bi-level mod-
els on the interaction between aggregator and residents in the
electricity market, experimenting with numerous HEMS mod-
eling aspects including different types of loads and operation
cycles, pricing schemes with fixed/varying periods and price
ranges [18], battery/storage modeling and resident preference
modeling, with later works [19] providing these models for
modular use in problems with different settings. Addition-
ally, the authors evaluated the impact that different pricing
schemes, rewarding/penalizing strategies and decision-making
approaches [20] have on energy costs, self-consumption [10]
and energy flexibility mobilization [21].

Bi-level approaches have also been used to model the
relationship between aggregator and residents under different
energy-market settings: Nizami et al. [22] propose a BEMS
acting as a load-scheduling and energy-quantity bidding agent
for prosumers wishing to engage in the transactive energy
market. Davide et al. [7] propose a bi-level model for an
energy community whose residents buy, sell and share energy
amongst each other, and evaluate it against an equally-sized
community of independent residents, showing that both the UL
aggregator and the LL residents profit from the application of
this model. All the above authors transformed their bi-level
problems into Mixed-Integer Linear Programming problems,
and solved them using mathematical programming solvers.

B. Evolutionary Bi-level Multi-Objective Models

Given the complexity that bi-level problems introduce,
such as non-linearity, non-convexity, and disconnectedness, a
consistent rise in the utilization of metaheuristics has been
observed over the last 20 years [23], with evolutionary meta-
heuristics and algorithms being particularly favorable [9].

Furthermore, the concepts of dominance and diversity between
solutions, as introduced in multi-objective optimization, are
handled particularly well by multi-objective evolutionary algo-
rithms such as dominance-based NSGA-II and decomposition-
based MOEA/D [23]. As a result, efforts towards solving semi-
vectorial bi-level optimization problems [24] brought forth
the use of evolutionary bi-level multi-objective (EBLMO)
algorithms, with one pioneering approach featuring self-
adaptiveness, local search and adaptive domination criteria
based on the UL decision-maker’s preferences [25].

Meta-/surrogate models, which are approximations of the
actual model that are relatively quicker to evaluate, have also
been employed to increase the computational efficiency of
EBLMO approaches. For instance in [26], the set of LL
optimal decision variables per UL variable is approximated
through quadratic fibers, while in [27] its solution mapping is
approximated using quadratic functions. Recently, the use of
a surrogate model for the UL has also been suggested [28].

To the best of our knowledge, the adoption of EBLMO
approaches for “energy-cooperative” communities is very
limited. While there is a plethora of works for conflicting
objectives in the smart-home context, concerning air quality,
thermal/visual comfort, energy costs and resident satisfac-
tion [29], they disregard the impact of these objectives on
higher-level stakeholder entities. On the other hand, bi-level
approaches that consider aggregators often disregard the con-
flicting nature of welfare-oriented objectives, opting instead
for mathematical programming solutions [20], or focus on
other conflicting objectives [8]. Finally, studies with a focus
on self-consumption and self-sufficiency [30] often disregard
the impact of aggregators in energy management and price
regulation. This work aims to address these gaps.

C. Decision Making in Bi-Level Multi-Objective Models

In the presence of a LL Decision Maker (DM) with multiple
LL optimal solutions to choose from, it is common for the UL
entity to assume either (i) an optimistic approach, implying
a fully cooperative LL. DM that allows choosing the optimal
solution for the UL objective(s), or (ii) a pessimistic approach,
implying an adversarial/non-cooperative LL. DM that chooses
the solution resulting in the worst objective function value(s)
for the UL objective(s). A few works have attempted to address
the “optimism” gap between the two approaches in various
ways. For instance, Sinha et al. [25] proposed a progressively-
interactive EBLMO algorithm where the UL preferences are
utilized for adapting the LL domination criteria in order to
achieve the most preferred solution. A similar concept was
proposed by Ibrahim and Mahmoud [31] through a fuzzy
TOPSIS algorithm, in which the UL preferences are estab-
lished along with acceptable levels of tolerance dictating the
feasible region from which the LL. DM selects a satisfactory
solution. Antunes and Alves [20] introduced the concept of
deceiving solutions in the optimistic approach and rewarding
solutions in the pessimistic approach, and later introduced
the concept of moderate solutions as a trade-off between the
two based exclusively on the UL preferences. Corpus and
Camacho-Vallejo [32] extended this list with the concept of
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Fig. 2: Aggregator (UL) encourages RE self-consumption by providing energy price-signals. Residents (LL) use price-signals to establish an
appliance-usage schedule subject to their preferences. Bi-level MOO results in a pricing scheme and schedule with optimized self-consumption.

neutral and awkward density-based solutions, studying the im-
pact of selecting each out of seven different types of solutions.
Finally, assuming an UL DM in addition to the LL. DM, Deb
et al [33] proposed an approach for the UL DM to select
a “minimum expected deviation” solution that results in the
smallest-possible maximal deviation from its optimistic values
given that the LL DM’s preferences are unknown. More on
multi-criteria decision-making can be found in [34]. While the
incorporation of a-priori UL/LL preference-information can
help reduce computational complexity [24], it may also allow
for more satisfactory “preference trade-offs” if cooperation
between the UL entity and the LL DM is established. This
work presents such a novel approach, with either fixed or
adaptable cooperation as different trade-offs emerge.

D. Knowledge Transfer

Knowledge Transfer is a performance-enhancing strategy
for BLMOPs that utilizes knowledge gained from previously-
evaluated solution(s) in different ways to aid in the evalua-
tion of new solutions: In [11], two parallel LL evolutionary
processes exchange and utilize solution-feature information
for improving their own search. In [14], the authors model a
constrained MOP as a multitasking optimization problem and
devise a metric identifying the tasks that would benefit the
most from a particular solution transfer. Direct neighbor Solu-
tion Transfer (DST) [12] utilizes the LL optimal solution of a
neighboring UL solution as a starting point for running a local
search on the LL problem of the current solution. Moreover,
Selective Population Transfer (SPT) [13] seeds the LL initial
population of currently-evaluated solutions by transferring the
LL Pareto-optimal set of the closest neighboring UL solution,
however, the authors have not examined whether a smaller
number of transferred solutions, or different distributions of
these solutions, perform better. Furthermore, their approach is
shown to work best when computational resources are limited,
with its performance compared to the baseline declining as
more resources become available. Contrary to SPT, APT
is shown to work best when high computational resources
are available, offering competitive solution quality and faster
execution time.

III. SYSTEM MODEL

Consider a multi-residential building that, at time ¢ €
[1..T], consumes electricity from two types of sources: re-
newable energy r; from photovoltaic (PV) cells, if available,
or grid energy otherwise, with the price c¢; per kWh dictated
by the aggregator’s pricing scheme ¢ = {(c1,...,cr). The
building is inhabited by residents v € [1..U] that own a
number of shiftable/real-time appliances a € [1..A], each
requiring energy el for operation. Each resident u has a set of
preferences P* = {p¥}, where p¥, depicts preferred usage
of appliance a at time t, however, usage x;, of appliance
a at time t results in resident u being charged with a cost
equal to el * c¢;. A community-level profile v establishes
the residents’ prioritization between preference satisfaction
and costs reduction. Finally, an appliance-usage schedule x
is established and the building’s energy management system
(BEMY) is responsible for deploying schedule x.

The efficiency of schedule x in terms of self-consumption
is expressed as the total difference between the energy F
consumed and the available r; at t. Moreover, pricing scheme ¢
affects the formation of schedule x (different prices c; result in
different appliance-scheduling decisions by the residents) and
x affects the levels self-consumption, as presented in Fig. 2.
For system model notations and their definitions, see Table I.

TABLE ]
SYSTEM MODEL NOTATIONS
Notation Description
t,a,u time, appliance, resident
Ty usage of appliance a by resident u at time ¢
T appliance-usage schedule
Do preference for usage of a by w at ¢
P set of appliance-scheduling preferences of u
me, index of preference satisfied by z7,
Mg usage-to-preference mapping of x
ct price of energy (in €) at ¢
c pricing scheme
T4 renewable energy (RE) available (in kWh) at ¢
ey energy (in kWh) required for operation of a of u
v community-level residents’ profile
S, D, C | objectives: self-consumption, dissatisfaction, costs
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A. Problem Definition and Research Goal

The primary research goal of this study is as follows:
How to optimally leverage energy flexibility in order to pro-
duce a pricing scheme c and appliance-usage schedule x that
offer optimal self-consumption S, as well as a high-quality
trade-off between the welfare-oriented objectives of resident
dissatisfaction® D and energy costs C ?

Self-consumption objective S aims at minimizing the
deviation of energy consumption from RE availability, given
schedule z = (2% |u=1,...,Ua=1,...,Ajt=1,...,T)
expressed as a binary vector, and is defined as follows:

Z\Et—rﬂ
ZZ@Z*th (1)

u=1a=1

Inln S(z

where B, =

Since energy flexibility in the form of load shifting allows
appliances to be operated at times other than those preferred, a
mapping is required between the time of usage of an appliance
and the preference satisfied by said usage. Thus, schedule x is
assigned an appliance usage-to-preference (x-to-p) mapping
my; = (méju = LUa = SGAt = 1,...,T),
expressed as an integer vector subject to:

t4i o ifaY, =1

G(r,mgz) :mY, = @ ,

(,ma) : ma, {0 if 2%, =0
where i€ [—t, T —t],

Vue([l..U,Vael..Al,Vte[1..T] (2)

Constraint G ensures that no preference may be satisfied by
an inactive appliance and that an active appliance may satisfy
up to one preference. Shifting step ¢ represents the deviation
of the actual time of use of an appliance from the preferred
time. As a result, three distinct scenarios regarding preference
satisfaction emerge, which can be observed in Fig. 3:
(1) my, =t < preference p, is fully satisfied by appliance
usage x, at the requested time ¢ (i = 0, scenario (c)).
(ii) mg, =t + 1 <> preference pg ,, is partially satisfied by
zy, at time ¢, instead of the requested ¢ + ¢ (scenario (a)).
(iii)) mY, = 0 — no preference is satisfied (scenario (b)).
Notice that no constraint exists between m, and a set of
preferences P“,i.e., a mapping is feasible even when a number
of mapped preferences are not part of any resident’s set P“.
The residents’ dissatisfaction and energy costs can be defined
as follows:

Dissatisfaction objective D: The residents’ dissatisfaction
is expressed as:

mlanz ZZa 121&1 ,

| P |
1, 1f pY, € P* and Pi, Mgy =1
where dy, = {1 — kIl if p¥, € P* and 3i,m%, =t
0, otherwise
3)

Sthe equivalent of maximizing appliance-scheduling preference satisfaction
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Fig. 3: The relationship between decision vectors x, m, and resident
preferences p for three (3) scenarios: (a), (b), and (c).

Objective D attempts to minimize the total dissatisfaction® of
residents. The dissatisfaction of a single resident u is defined
as the ratio of the sum of «’s dissatisfaction d, per preference,
to the total number | P* | of u’s preferences. Dissatisfaction
dY, represents either full, partial or non-dissatisfaction of
preference pg,, based on mapping m, as explained. Penalty
factor k € (0, 1) dictates the amount of dissatisfaction incurred
by every unit of difference between the preferred time ¢ and
the actual time of usage ¢ + ¢ of appliance a, and is set to
k = 0.5 for this study. Finally, formulating the objective as
a fraction of the total preferences ensures higher priority for
residents with fewer preferences, as the impact of dismissing
their requests is higher than that of demanding residents.
Costs objective C aims at minimizing the maximum cost
for any resident, encouraging preference satisfaction in a
uniform/fair manner by not penalizing the satisfaction of
preferences for residents with lower costs than others:

mxinC'( :uénla%]zz:e % Cp ok Ty %)

a=1t=1

B. Bi-level Multi-Objective Optimization Problem
Formulation

Pricing scheme c is the UL decision vector used by the
UL aggregator to optimize S(x). The LL is responsible for
the residents” welfare, aiming at minimizing both D(m,) and
C(c,x), and is expressed as a MOP with schedule z and
preference mapping m, as its decision vectors. Hence, the
bi-level MOP can be formulated as follows:

chan ¢, ) ZSt * pe(cy),

]-+(ct_cmzn) ifEt—’f't<0

where pi(ci) = {

1+ (¢max — ¢t), otherwise
_ (N
s.t. x € ¥(c) = argmin f G(z,my),
T, My 2
where f1 = D(myg), fo=C(c,x) ®)

where ¢; € [Cmin, Cmaz), F' denotes the UL objective function
(consisting of objective S with the additional incorporation of
a penalty coefficient p; € [1, 14 (Cmaz — Cmin)]), While f1, f2
denote the LL conflicting objectives, and W is the LL reaction
set, from which a solution is selected based on a decision-
making model incorporating the residents’ profile v.
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Objective function F' uses p; to penalize deviation from self-
consumption S of schedule x, with the amount of penalty dic-
tated by c: if the consumed energy F is less than the available
r¢, a lower price c¢; results in lower penalty and, conversely,
a higher price ¢; when E, is greater than 7, results in lower
penalty. Consequently, the lower prices assigned within the RE
production curve incentivize the residents towards appliance
usage during high RE production hours, as depicted by Fig. 4.

C. Decision Making

The UL aggregator may assume (i) an optimistic approach,
expecting the LL Decision Maker (DM) to select a solution
from the optimistic reaction set W° that optimizes F', or (ii) a
pessimistic approach, expecting that the LL. DM will select a
solution from the pessimistic set W' resulting in the worst
objective function value for F'. Furthermore, by assuming
knowledge of the LL DM preferences, the community-level
residents” profile index v € [0,1] may be used to indicate
the decision/choice of a solution from ¥ by the LL DM,
with extreme-cases v = 1 and v = 0 representing exclusive
prioritization of minimizing dissatisfaction (objective D) and
minimizing costs (objective '), respectively. This allows for
(iii) a “resident-aware” approach in which the LL-desired
solution is accepted. Finally, by assuming willingness by the
LL DM to be influenced by the UL preferences, we may
propose (iv) a fixed cooperation approach in which cooperation
index ¢ € (0,1) allows for setting the trade-off between the
UL and LL desired solutions, or (v) a dynamic cooperation
approach in which q is iteratively estimated and tuned based
on a concept of trade-off fairness. Consequently, our decision-
making model is defined subject to the UL approach, the LL
residents’ profile v and the cooperation index q.

D. Pricing Schemes

Pricing scheme c follows the fixed-period and variable-
pricing model [18], assuming that for each period ¢ € [1..T]
the price ¢; may vary between ¢, and c¢;,4,. For generaliz-
ability, we opt for a normalized range ¢; € [0, 1] instead of an
empirically-established range as in the works of Antunes and
Alves [18]. For single-level optimization approaches, which do
not support a dynamic pricing scheme, a fixed pricing scheme
is assumed and specifically a flat tariff [35], resulting in equal
prices ¢; with the average ¢; = (Cinaz — Cmin)/2 of the price
range assigned to all ¢. A flat tariff offers no incentives to the
residents to participate in RE self-consumption.

IV. BI-LEVEL MULTI-OBJECTIVE ENERGY MANAGEMENT
SYSTEM II (BIMO-EMS-II)

This section starts with an overview of BiMO-EMS-II,
followed by a detailed introduction of the main components.

A. Algorithm Overview

BiMO-EMS-II follows a nested evolutionary approach:
The upper level (UL) employs the traditional Genetic Algo-
rithm (GA), while the lower level (LL) employs the Multi-
Objective Evolutionary Algorithm based on Decomposition
(MOEA/D) [36]. Over multiple iterations, the UL infers the
energy demand at the LL and updates the energy price-
signals to guide the LL process towards improved levels of
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Fig. 4: Energy-consumption distribution of appliance-usage schedule
x subject to pricing scheme ¢, given the energy demand and RE
availability.

self-consumption. An overview of BiMO-EMS-II is provided
below and in Algorithm 1, while a detailed description of the
evolutionary algorithms used per level can be found in [15]:
A population C' of pricing schemes c is initialized and each
c is sent to the LL for evaluation. During LL evaluation,
a population X is initialized, consisting of appliance-usage
schedules z, either by using the APT strategy (after the UL
initial population has been fully evaluated), or by initializing
a uniformly-random population, with the required preference
mapping m, per initialized x generated by the Mapping
Heuristic (MH). After the evaluation of all x+ € X, the
MOEA/D with the normalized Tchebycheff approach [36]
is executed and, upon convergence, the External Population
containing pairs (z,m,) is returned as the LL reaction set
¥. From ¥, the Decision-Making with Cooperation (DMC)
heuristic selects a single x. and the “pricing scheme-schedule”
pair (¢, x.) is returned. The evaluation of all solutions in the
UL initial population is followed by the execution of the GA.
The best solution ¢* from the resulting population, along with
its coupled x.- and preference mapping m,_. , are returned.

Algorithm 1 BiMO-EMS-II
Input: r; P; e; v; q;
Output: (c,z.,m,,)
1: Init population Cy = {c',..., ¢}, // Uniformly random
Ve € Cy, F(c,z.) + UL EVALUATE(c, 1, P, e)

2: GA // Bin. Tourn. Select., SBX Cross., Uni. Mut.
3: return (¢*,xc+,my . ) € C /I ¢* : best solution
4: function UL EVALUATE(c, 1, P, €)

5: U < LL EVALUATE(c, P, e) /I LL Reaction set ¥
6: e+ DMC(v,q,7¥) /I Decision-making
7: return F'(c,z.,r)

8: end function

9: function LL EVALUATE(c, P, e)
10:  Init population X = {z! ... 2V} in 3 steps:
1) use APT, or z' = 0, 2V = 1, unif. rand. 22 : 2NV "1,
)V e X, (x,my) < MH(z, P),
3) flx,my) < (2), fi =D(myg, P), fo =C(c,z,€)
11: MOEA/D // Tchebycheff, UPMX Cross., BitFlip Mut.
12: return External Population {(z,m,)}
13: end function




IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

Mapping Heuristic: Establishing an appropriate preference
mapping m, is crucial in obtaining a good LL solution: An
empty mapping m, = (0) assigns LL solution (z,m,) the
worst possible value for objective D. On the other hand, a
“strict” mapping in which all mapped preferences are fully
satisfied (i.e., all mappings are between z, = 1 and its
respective pg,), offers a better value for D while still satisfying
constraint G (Eq. 2). We employ a two-step Mapping Heuristic
(MH) [37], that first creates a ‘“‘strict” mapping by only
allowing mappings that result in fully satisfied preferences, and
then all remaining (unmapped) appliance usages are mapped
to the closest preference not yet assigned to a mapping.

B. Decision Making with Cooperation (DMC) Heuristic

DMC in Algorithm 2, takes advantage of any knowledge
regarding the LL DM preferences, as well as any cooperation
between the UL and LL entities, with cooperation defined as
“the willingness” of the LL. DM to be influenced by the UL
preferences. DMC supports the following approaches:
Optimistic/Pessimistic: The traditional UL optimistic and pes-
simistic approaches assume no knowledge of the LL DM
preferences and no cooperation between the UL and LL
entities. Hence, the optimistic approach returns any optimistic
solution x* from W?, and the pessimistic approach returns any
pessimistic solution zf from UF (lines 3-4).
Resident-aware: Assuming knowledge of the LL DM prefer-
ences, yet no cooperation between the UL and LL entities,
the resident-aware approach returns the LL-desired solution
z € W. Solution z is defined as the solution whose sub-
problem’s weight vector A is closest, in terms of Euclidean
distance, to the weight vector w desired by the LL DM, as
derived by profile index v (lines 5-8). For non-decomposition
algorithms, the solutions in W may be assigned weight vectors
through ordering ¥ by objective-value and indexing via a
uniform weight vector.

DMC with fixed cooperation: Given that the LL. DM is
cooperative to some extent, with the extent represented by
cooperation index ¢ € (0, 1), an UL and LL score is associated
with all solutions x € ¥ based on their desirability by the
UL and the LL DM, respectively: the UL score is defined
as the value of the UL objective function F', while the LL
score calculation utilizes the Tchebycheff ASF to measure
the distance of = to reference point z, with v serving as the
weight coefficient. Then, a decision-making reaction set W2 is
established, containing only those solutions whose scores fall
within the acceptable boundaries, i.e., between the LL score
of the optimistic * and the UL score of the LL-desired z
(lines 10-13). Finally, each x € ¥ assumes a weighted-sum
of its UL and LL scores, weighted based on coop index g and
normalized based on boundary-solutions «* and Z, as follows:

SCORE(q,w,z,Z,2") =
q+*UL(z,Z,2*) 4+ (1 — q) * LL(w,z,Z,2"),
F(z) - F(z*)’
fi(z) = fi(z)
filz*) = fi(Z)

where UL(x,Z,x*) =

LL(w,z,Z,2*) = max

ie{1,2} wi

)| ©

The solution x with the best overall score is returned (line 14).
DMC with dynamic cooperation: Assumes that both the UL
entity and the LL. DM are willing to sacrifice a desired solution
if a fairer solution is available, with the “fairness” principle
defined as “sacrifice a desired solution at one level in pursuit of
a solution at the other level offering more/equal gain compared
to the loss due to sacrifice”. Consequently, the dynamic-coop
approach starts off by pushing coop index ¢ in both directions

Algorithm 2 Decision Making with Cooperation (DMC)

Input: v; q; ;

Output: =«

: U0 ¢ argmin, g F(x) /I Optimistic reaction set

: UP < argmax, oy F(7) /I Pessimistic reaction set

: Optimistic approach: return z* € ¥°

. Pessimistic approach: return z* ¢ ¥”

: Resident-aware approach:

wp <+ v; wy < (1—wv) // LL desired solution’s weight

{z} <—argmin,cy | w— X, |  // vector A closest to v

: return Z <— argmin, ey F'(2)  // LL-desired solution

: DMC with fixed cooperation approach:

. Fmod o F(%) // Worse allowed UL-score

o fred o max; [wi(fi(z*) — fi(2))] // Worse al. LL-score

0D} // Decision-making reaction set

:Vz € W, if F(x) < F™ or max; [w;(fi(x) — fi(2))] <
fmed then P « WP Uz // Dismiss not-allowed solut.

14: return x < argmin, .y SCORE(q, w,,Z,2*) // Eq. 6

15: DMC with dynamic cooperation approach:

16: 7 + 0.01 /I Amount of cooperation to add/remove

17: yy + ADJUST COOP(j,q,w, z,Z,2z*) // Increase coop

18: gainy + UL(x,Zz,2*) — UL(yy, Z,2*) // UL gain, Eq.6

19: lossy, < LL(w,yu,Zz,z*) — LL(w,z,Z,z*) // LL loss

20: yr, < ADJUST COOP(—j, ¢, w,x,Z,x*) // Decre. coop

21: gaing, + LL(w,z,Z,2*) —LL(w,yr,Z,2*) // LL gain

22: lossy <+ UL(yr,Z,2*)—UL(x,Z,2*) // UL loss, Eq.6

23: if gaingy > gaing, then /I Decide coop direction

R R N N e

—_ = = =
w N = O

24: while gainy >= lossy, do /I Increase coop
25: T < Yyu

26: yu < ADJUST COOP(j, ¢, w,yu,Z,x*)

27: /I Calculate gain/loss as in 18-19

28: end while

29: else

30: while gainy >= lossy do /] Decrease coop
31: T <y

32: yr < ADJUST COOP(—j,q,w,yr,Z,x*)

33: /I Calculate gain/loss as in 21-22

34: end while

35: end if

36: return

37: function ADJUST COOP(j, ¢, w, x,Z, z*)
38: while y =2 do /I Stop when new best solution

39: q—q+7 /I Increase/decrease coop
40: y « argmin, cyp SCORE(q, w,y, %z, %)

41: end while

42: return y

43: end function
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until a solution other than = becomes the best trade-off solution
for the UL (yy) and the LL (y,), respectively, with respect to
the updated scores (lines 17, 20, 37-43). Next, the gain and
loss in desirability of y; and y;, by each entity is calculated
(lines 18-19, 21-22): the entity with the highest gain (lines
23, 29) gets to push ¢ in its favorable direction (up for the
UL and down for the LL) as long as the “fairness” principle
holds (lines 24-28, 30-34). Finally, the best trade-off solution
x given the established cooperation is returned (line 36). Coop
index ¢ is passed-on from UL parent to offspring solutions,
enabling DMC to start at an appropriate cooperation level for
each solution before making optimizations.

C. Uniform Partially Mapped Crossover (UPMX)

The proposed Uniform Partially Mapped Crossover
(UPMX) is an adaptation of the original, widely-used PMX,
hence inheriting the same benefits and advantages. PMX
is a two-point crossover operator for order-based permuta-
tion chromosomes that “repairs” the offspring into a valid
permutation by replacing the resulting duplicate values out-
side its crossover region with the original overwritten values
within its crossover region. In the proposed BMOP, the ini-
tial crossover operation on z',z? might produce infeasible
offspring (2%, my1), (2%, m,2) due to constraint G (Eq. 2).
Therefore, a repair heuristic is utilized for updating the prefer-
ence mappings m,1, m,2 into feasible solutions. Moreover, an
adaptation is required given that a mapping slot may be empty
(mg, = 0: either an inactive appliance or an active appliance
that maps to no preference), which is equivalent to assuming
that the order-based permutation chromosome contains null
genes. The adapted UPMX is described below.

UPMX aims at an optimized 1-1 matching between ap-
pliance usages and preferences for maximal exploitation of
energy flexibility. It follows the same gene-selection process as
the Uniform Crossover variant of PMX [38]: for every position
in either chromosome !, 22 with a gene that is set (z%, = 1),
there is a 50% probability of reversing those genes in the
offspring. Depending on the values of the reversed genes,
their preference mappings m{, may be affected in different
ways, with complementary scenarios provided in Fig. 5: (a):
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Fig. 5: Two pairs of decision vectors (z',m,1) and (22, m,2)
before and after applying UPMX, for 3 scenarios: (a), (b), (c)
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Fig. 6: The Adaptive Population Transfer process from informant
solution z* to currently-evaluated 2-”. The MOEA/D weight vector
A can be observed, as well as the APT parameter of transfer selection-
distance d.

Both genes are set. The preference mappings for pil and p%)?’
are exchanged. Since pj ; was already covered by (z1)1 3,
and given that the prev10usly mapped preference pl 1 1S now
available again, (1)} 3 1s mapped to pl 1 instead. Scenarlo
(b): One gene is set. The mapping for preference pg’Tf1 is
removed from z' and assigned to (2*)3 ;. Scenario (c): One
gene is set. The mapping for preference pgATfl is removed
from 22 and assigned to (z)Y ;-_,. Since pY ;_; was already
covered by (ml)X’T&, the mapping is removed and the gene
1s reset.

D. Adaptive Population Transfer

Our proposed Adaptive Population Transfer (APT) utilizes
the decomposition-specific weight vector A to selectively-
transfer solutions and achieve a better balance between ex-
ploration and exploitation than SPT [13]. APT is split into 3
phases: (i) informant selection, (ii) knowledge extraction and
processing, and (iii) knowledge application. These phases are
demonstrated in Fig. 6.

In the informant selection phase (i.e., the selection of the
UL solution from which the knowledge will be extracted), the
selection criterion is identical to SPT: the closest (in terms of
Euclidean distance) neighboring UL solution to the currently-
evaluated offspring is selected from the current population, in
the absence of an UL Pareto-optimal archive.

In the knowledge extraction and processing phase, a tem-
porary population (TP) of size N is filled with solutions from
the LL reaction set ¥ of the informant as follows: V¥ is sorted
by objective-value in ascending order, matching the order of
weight vector A (i.e., starting from the worst value for the
first objective). The sorted ¥ is then iterated over in pairs
of adjacent solutions, starting from the pair with indices (0,1),
then (1,2), etc. In each iteration, the first solution in the pair is
transferred to TP and assigned to all consecutive subproblems,
identifiable by A, for which a better Achievement Scalarization
Function value is achieved compared to the second solution in
the pair. Once the last solution in the sorted W is transferred,
it is assigned to all remaining subproblems and the process
ends. When |¥| < N, the final TP is an extension of ¥
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containing duplicated solutions for consecutive subproblems.
When |¥| > N, TP is a subset of U.

The final knowledge-application phase applies a uniformly-
distributed subset B of solutions from TP to the LL initial
population (IP) of the currently-evaluated solution, with each
solution in B assigned to the subproblem in IP identified
by its A. The transferred solutions within IP are referred to
as “strong” solutions, and the remaining randomly-generated
solutions in IP are referred to as “weak” solutions. Subset B
is created by transferring solutions from the ordered TP that
are d solutions away from each other, with d defined as the
transfer selection-distance.

V. EXPERIMENTAL SETUP

This section describes the datasets, the algorithms and algo-
rithmic settings, as well as the performance metrics considered
in the experimental evaluation.

A. Datasets

BiMO-EMS-II is evaluated on twelve (12) realistic datasets
encapsulating the residents’ preferences P, with each dataset
representing the appliance-usage preferences expressed for a
variant set of households by their respective residents for a spe-
cific season and day. The preferences were extracted from the
REFIT dataset [39], a public S00MB dataset which contains
real kW readings of the power output for the most energy-
intensive shiftable/real-time appliances in 20 households in
the UK, between September 2013 and July 2015. The pre-
processing performed in order to extract the preferences in-
cluded (i) converting kW readings per second into per-minute
readings by removing duplicate records, (ii) aggregating per-
minute readings into hourly readings through summation,
(iii) defining preference (or not) of an appliance, per hour,
through threshold values, and (iv) mapping each household
to a resident and assigning the 24-hour preference-batch
for a specific date for that household to the corresponding
resident. Furthermore, the energy consumption per appliance
was derived by examining the kW readings in the original
dataset. The resulting datasets can be found in Table III.

Each dataset also includes RE production data, which is uni-
formly varied based on the number of households and season.
A dataset’s hourly peak-production is defined as the output of
a 4.5kW PV-system per household, using the standard formula
for calculating solar panel energy production:

Ppy = Ppeak' * (G/Gstandurd) —ax (T - Tstandard)

subject to (i) solar panels with P,eqr = 450W and a
temperature-coefficient a = 0.3, (ii) the Standard Test Con-
TABLE II
PARAMETER VALUES FOR ALGORITHMS

Parameter GA | MOEA/D | APT
Population size (N) 100 300 -
Crossover probability 0.9 1.0 -
Mutation probability 10-2] 102 -
Neighborhood size (17) - 25 -
Transfer selection-distance (d) - - 2

Convergence requirement:
UL: no new best solution for 10 gen
LL: conv > HVgen — HV{(gen—5)
(relaxed: 1073, semi-strict: 10™4, strict: 10*6)

TABLE III
THE REALISTIC DATASETS GENERATED BY USING INFORMATION
FROM THE REFIT PUBLIC DATASET

Dataset Date U|A|T House Demand | Avail. RE
holds(ID) | (kWh) (kWh)
Sml_Aut |23/10/2013| 5 [25]|24| 12345 113.4 114
Sml_Win | 11/12/2013 | 5 |25(24| 13456 96.2 92
Sml_Spg | 05/04/2014 | 5 |25|24| 12345 156.7 136
Sml_Sum | 02/06/2014 | 5 [25|24| 12345 97.5 162
Med_Aut | 29/11/2013 | 10 | 49 | 24 1-10 183.6 228
(2%,9%)
Med_Win | 19/01/2014 | 10 {50 |24| 13456 241.0 184
7891013
Med_Spg | 18/03/2014 | 10 |49 | 24 1-10 186.4 272
Med_Sum | 15/06/2014 [ 10 |47 |24 | 12345 156.0 324
17-21
Lrg_Aut |23/10/2014 20|91 |24 | All 1-21 248.9 456
Lrg_Win |25/01/2015 20|91 |24 | All 1-21 418.7 368
Lrg_Spg |21/03/2014 {20 |91 | 24| All 1-21 340.8 544
(4*,11%)
Lrg_Sum | 28/06/2014 {20 |91 |24 | All 1-21 302.1 648

*date unavailable, closest date retrieved

ditions and (iii) the average seasonal temperature G’ and
irradiance 71" [40] in the UK:

Autumn: G :9,T : 833; Winter: G : 5,T : 750;

Spring: G : 13,T : 916; Summer: G : 17,T : 1000.

Finally, a RE production curve is formed from 06:00 to 18:00
by assigning the peak-production value at 12:00 and adjusting
the hourly production values according to the standard RE
production curve as often encountered.

B. Algorithms and Algorithmic Settings

BiMO-EMS-II is implemented on the jMetal 4.5% Java-
framework for multi-objective optimization (MOO) and eval-
uated both as a complete system and at the lower level only.

1) Bi-Level MOO: The performance of BiMO-EMS-II is
compared against the following approaches:

BiMO-EMS [15]: The original algorithm performs appliance-
scheduling only subject to load curtailment, equivalent to only
creating “‘strict mappings” with fully-satisfied preferences. It
uses the two-point crossover and no Knowledge Transfer.
OptaPlanner (OP)°: an open source Al constraint solver us-
ing metaheuristics and state-of-the art techniques for tackling
NP-complete/hard optimization problems formulated by the
user. The default solver configuration is assumed. OP does
not support MOO, hence we opt for a hierarchical evaluation
function where S is the primary objective and:

(i) OPD: the secondary objective is dissatisfaction D.

(ii) OPC: the secondary objective is energy costs C.

Given OP’s prioritization of objectives compared to BiMO-
EMS-II, a direct comparison of their performance is irrational.
Instead, we use OP as an evaluation of the achievable levels of
self-consumption when S is designated the primary objective.
Resident preferences (PRF): satisfies all sets of preferences
P for all residents and, consequently, optimizes objective D,
which implies the worst possible value for objective C'.

Tstatista, 2024. UK: average temperature by month 2024 | Statista. LINK:
https://www.statista.com/statistics/322658/monthly-average-daily-temperatu-
res-in-the-united-kingdom-uk/

8jMetal, 2015. jMetal Web site. LINK: https:/jmetal.sourceforge.net

OptaPlanner, 2024. OptaPlanner - The fast, Open Source and easy-to-use
solver. LINK: https://www.optaplanner.org
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LL Pareto-optimal front achieved by BiMO-EMS-Il vs
LL values of OPD and OPC optimal solutions (S=0)

(Dataset: Lrg_WIN, N:300, T:25, c:{0.5}, conv:10'6)
~BIMO-EMS-II
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Fig. 7: LL Pareto front by BiMO-EMS-II compared to the LL values
of the optimal solutions (S=0) by OptaPlanner on the Lrg WIN
dataset with fixed pricing for all algorithms.
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Each approach is executed thirty (30) times. The single-level
approaches adopt the fixed pricing scheme described in sec-
tion III-D. For bi-level approaches, the optimistic approach is
assumed, unless stated otherwise. The UL and LL algorithms
adopt the parameter values in Table II (parameter calibration
experiments are available as supplementary material). The
termination criterion is reaching convergence, defined for the
UL as “new best solution not found within ten generations”
and for the LL as a difference in hypervolume between five
generations smaller than conv, which is updated from the
relaxed 10~2 up to the strict 1076 as the difference in fitness F’
between best and worst solution in the UL population shrinks.

2) Lower-Level MOO: MOEA/D is compared with the
state-of-the-art Pareto-dominance based Non-Dominated Sort-
ing Genetic Algorithm II (NSGA-II) [41]. Both algorithms
adopt the parameter values in Table II (parameter calibration
experiments are available as supplementary material). The
convergence requirement is set to strict from the start.

C. Decision Making Experimental Setup

The performance of BiMO-EMS-II is compared subject
to all the decision-making approaches supported by DMC,
which results in seven variations: optimistic (OPT), pessimistic
(PES), resident-aware (RA), and decision-making with coop-
eration (DMC), both with a dynamic cooperation index ¢ and
three variations of uniformly-distributed fixed values for q.
Furthermore, each variation is evaluated on five uniformly-
distributed community-level residents’ profiles v.

D. Knowledge Transfer Experimental Setup

To justify our experimental setup, we begin by pointing out
a trait of our bi-level MOP: As illustrated by Singh et al. [13],
“LL accuracy and UL accuracy are not always positively
correlated”, i.e., LL solution ‘A’ may be worse than LL
solution ‘B’ but result in a better UL solution than ‘B’ does.
Such behavior is evident in our problem, as seen in Fig. 7,
where the LL solutions of optimal UL solutions are not on the
LL Pareto-optimal front (PF). For such problems, evaluating
the performance at the UL is impractical unless the theoretical
LL PF is known, in which case a re-evaluation of the UL
solutions can be performed [13] by decoupling them from the
LL search and having them assume their theoretical LL PF.
Since the theoretical LL PF for our problem in unknown, our
performance evaluation takes place at the lower level.

We adopt the following approach: The proposed APT with
d = 2 is compared against SPT [13], as suggested by Singh et.

al, as well as the baseline strategy NT of applying no Knowl-
edge Transfer. SPT and NT are applied to both MOEA/D and
NSGA-II. Given that MOEA/D associates each solution in its
population with a unique subproblem, SPT was adapted in two
steps: (i) upon addition to the External Population, each LL
solution of the informant maintains its subproblem’s weight
vector A and is assigned to the same subproblem in the IP of
the receiving UL solution, and (ii) duplicate solutions, in terms
of equal A\, are removed, with the surviving solution being
the one with the highest Achievement Scalarization Function
value. We experiment using three variations of MOEA/D
(one per Knowledge-Transfer strategy) and two variations of
NSGA-II for the two applicable strategies SPT and NT. An
experiment consists of all five algorithm variations evaluated
on a dataset, resulting in a total of twelve experiments. Each
experiment takes the following form:

Two UL IPs are initialized, one assuming MOEA/D as
its LL algorithm and one assuming NSGA-II, with the UL
decision vectors being randomly generated (using a different
seed per dataset) and equal between the UL IPs, i.e., each
solution in the first IP has a 1-1 match with a solution in the
second IP for which the UL decision vector is equal. Note that
the UL and LL objective values between solutions in the IPs
are not equal, due to the different underlying LL algorithm.
Then, for each of the five algorithm variations, an UL offspring
population is created from the respective UL IP using the UL
evolutionary operators and then it is evaluated.

E. Crossover Experimental Setup

UPMX is evaluated against alternative crossover operators:

1) PMX: Original Partially Mapped two-point Crossover.
2) UNI: Uniform Crossover.

The operators are used in both MOEA/D and NSGA-II to
evaluate an initialized UL IP on all datasets, with the UL
decision vectors being randomly generated using a different
seed per dataset. Note that no Knowledge Transfer is applied.

F. Performance Metrics

The performance metrics used for evaluating solutions of
multi-objective algorithms in our experiments consist of the
hypervolume indicator (HV), as a percentage, spread (A), and
coverage (C-metric), as proposed by Zitzler and Thiele and
used in [15]. For statistical analysis, we used the two-sample
T-test with a null hypothesis rejection h = + indicating
significantly different results with 95% confidence, and h = —
otherwise. CPU time was used for evaluating the algorithms’
execution time.

VI. EXPERIMENTAL EVALUATION

This section presents the experimental results regarding (a)
the performance of BIMO-EMS-II, (b) the DMC heuristic, (c)
our choice of APT as the Knowledge-Transfer (KT) strategy,
and (d) our choice of UPMX as the crossover operator. The
computing machine used consists of an Intel Xeon Processor
E5-2697 v2 @2.70GHz and 24GB of RAM.
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TABLE IV
PERFORMANCE COMPARISON BETWEEN BIMO-EMS-II, BIMO-EMS, OPD, OPC AND PRF WITH RESPECT TO S, D AND C.
NOTATION S** DENOTES THE UTOPIAN VALUE. RESULTS CORRESPOND TO AVERAGES ACROSS 30 DISTINCT RUNS

Data Algorithm Data Algorithm Data Algorithm
set | BiMO | BiMO | OPD | OPC | PRF set |BiMO | BiMO | OPD | OPC | PRF set | BiMO | BiMO | OPD | OPC | PRF
Sml n EMS Med /4 EMS Lrg 11 EMS
Objective S (in kWh) S** Objective S (in kWh) S** Objective S (in kWh) S**
AUT | 103 [ 535 [ 279 [1.39] 101 | 0.6 | | AUT | 50.5 | 157 [44.4]44.4] 267 [444] | AUT | 207 | 326 | 207 | 207 | 431 | 207
WIN | 637 | 48.7 | 049 [0.79| 100 | O WIN | 153 | 485 0 0 (141 O WIN | 469 | 164 0 0 [352] 0
SPG | 183 | 500 [ 029 | 0 92 | 0 SPG | 110 179 | 107 | 107 | 265 [85.6| | SPG | 240 | 374 | 225 | 225 | 534 | 203
SUM| 64.5 | 99.0 | 64.5 | 64.5| 132 |64.5| |SUM| 168 | 213 | 168 | 168 | 255 | 168 | |SUM | 368 | 432 | 348 | 348 | 503 | 345
Objective D D* Objective D D* Objective D D*
AUT | 1.87 | 222 297 [348] 0 0 AUT [ 597 | 632 [804[7.77] 0 0 AUT [ 793 ] 799 J10.T 126 O 0
WIN | 2.58 | 294 | 3.75 |3.80| O 0 WIN | 398 | 393 |7.18 |7.13| 0 0 WIN | 7.35 | 7.68 | 124|122 | 0O 0
SPG | 091 | 090 | 329 | 346 | O 0 SPG | 3.84 | 407 | 492|583 | 0 0 SPG | 7.88 | 844 | 105(105] O 0
SUM| 1.06 | 1.40 | 2.31 |3.07| O 0 SUM| 1.78 | 233 | 473|650 | 0O 0 SUM| 459 | 448 | 73 | 120| O 0
Objective C' (in €) Objective C' (in €) Objective C' (in €)
Pricing scheme Pricing scheme Pricing scheme
Dynamic Fixed c* Dynamic Fixed [0k Dynamic Fixed c*
AUT [ 215 [ 1.60 | 194 [ 194194 0 AUT [ 1.05 ] 043 [203[203]203] 0 AUT | 099 | 155 [242[242]242] 0
WIN | 0.82 | 0.17 | 11.5 | 125]125] O WIN | 3.08 | 1.96 | 159 | 147 | 26.0| O WIN | 3.64 | 1.93 | 19.1 | 181 (239 | O
SPG | 845 | 7.51 [26.65]224|287| 0 SPG | 149 | 156 | 155|155(204| 0O SPG | 1.73 | 0.76 |20.3 |20.3|204| 0
SUM| 1.14 | 221 | 16.0 | 16.0 | 16.0 | O SUM| 198 | 2.08 | 19.0| 19.0|19.0| 0 SUM| 2.14 | 1.77 | 232|232 |232| O

A. System Evaluation

Table IV compares the performance of BiMO-EMS-II
against all algorithms of section V-B, on each objective of the
BMOP, for each dataset. Notation S** represents the utopian
value with regards to S (derived by deducting the demand from
the available RE per dataset as seen in Table III), “utopian”
because a perfect distribution of the demand to exactly match
the RE distribution might not exist. We provide an overview
of the results and then proceed to discuss the potential daily
savings of BIMO-EMS-II in terms of energy and costs.

Energy distribution derived by BIMO-EMS-II compared to
demand and renewable energy availability (Dataset: Med_AUT)
Timet

Energy distribution derived by BIMO-EMS-II compared to
demand and renewable energy availability (Dataset: Med_WIN)
Timet

Energy (kWh)

< (€)
Requested mmmm _ Available Const

(a) Med_AUT

(b) Med_WIN

Energy distribution derived by BiMO-EMS-II compared to
demand and renewable energy availability (Dataset: Med_SPG)
Timet

Energy distribution derived by BiMO-EMS-II compared to
demand and renewable energy availability (Dataset: Med_SUM)
Timet

Energy (kWh)

Price ct (€)
Requested mmm _ Available Consumed

(d) Med_SUM

Requested i Available

(c) Med_SPG

Fig. 8: Energy distribution derived by BiMO-EMS-II compared to
demand and RE availability, on the Medium datasets.

1) Overall and per-objective performance: BiMO-EMS-II
achieves the optimal solution with regards to S in 3 datasets.
For the rest of the datasets, the distance from the optimal S
varies: up to 19 kWh for the Small datasets, (ii) up to 25 kWh
for the Medium datasets and (iii) up to 47 kWh for the Large
datasets. OPD and OPC, who are used to estimate the highest-
achievable levels of self-consumption, consistently achieve
optimal or near-optimal solutions with the exception of the
Medium and Large Spring datasets. The original BiMO-EMS,

on the other hand, is consistently inferior to BiMO-EMS-
II, and since both algorithms employ the same UL process,
this difference in performance is attributed to the enhanced
capability of BiMO-EMS-II to exploit energy flexibility and
hence more-efficiently explore the LL space, producing an
abundance of LL solutions which in turn enable better UL
exploration as well. PRF is used to indicate how poor self-
consumption levels can be if energy flexibility is disregarded:
for the Small datasets, S is 68-100 kWh worse, for the Medium
datasets it is 87-223 kWh worse and for the Large datasets it is
158-352 kWh worse than if optimized. Regarding objective D,
BiMO-EMS-II consistently outperforms all other approaches,
indicating its capability of minimally-sacrificing the residents’
satisfaction in achieving high levels of self-consumption. Re-
garding objective C, the original BIMO-EMS is competitive to
BiMO-EMS-II, indicating that both versions of the algorithm
produce cost-attractive pricing schemes. Moreover, BiMO-
EMS-II exhibits greater difficulty in achieving a good S when
the optimal value is zero, i.e., it performs better when the
demand cannot fully exhaust the available renewable energy.
Overall, BiMO-EMS-II achieves optimal or high levels of self-
consumption, subject to a high-quality trade-off between the
resident-oriented objectives of maximizing preference satisfac-
tion and minimizing costs.

2) Utilization of energy flexibility: Fig. 8 illustrates the
performance of BiMO-EMS-II on the Medium datasets, sub-
ject to varying seasonality. In conjunction with Table IV,
we can identify four distinct scenarios: (a) Demand within
the RE production curve is limited, and a big proportion of
the plentiful demand outside the curve is transferred inside,
leading to near-optimal levels of self-consumption. (b) The
demand within the RE production curve almost matches the
curve but, contrary to OP, a distribution perfectly-fitting the
curve cannot be established. (¢) Demand within the RE pro-
duction curve is limited and, despite the transfer of demand
from outside to fill the curve, both OP and BiMO-EMS-
IT struggle to achieve the utopian level of self-consumption.
Nonetheless, both approaches achieve similarly-high levels of
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TABLE V
DAILY ENERGY SAVINGS (IN KWH), RESIDENT DISSATISFACTION AND COST SAVINGS (IN €) OF BIMO-EMS-II COMPARED TO
DISREGARDING ENERGY FLEXIBILITY (PRF APPROACH) USING THE SAME DYNAMIC PRICING SCHEME. RESULTS CORRESPOND TO
AVERAGES ACROSS 30 DISTINCT RUNS
Difference Datasets: Small Datasets: Medium Datasets: Large
in obj. val.| AUT WIN SPG SUM AUT WIN SPG SUM AUT WIN SPG SUM
from PRF % % % % % % % % % % % %
S (kWh) [-90.7|-89[-94.21-93|-75.3|-81|-67.8|-51 =217 |-81[-126|-89| -155 |-58 |-87.4 | -34 =224 1-52|-306 [-86| -294 |-55]| -135 |-26
D 1.87 |37 | 2.58 |51 073 |14 | 1.06 | 21 597 15939839 |3.84|38|1.78 |17 7.93 139 |7.35(36|7.88|39|4.59 |22
C(€) |-10.1|-82]-17.2(-95|-13.3|-61|-8.71|-88| [-26.5(-96| -16 |-83|-17.8(-92| -6 |-75 -24.0/-96|-26.9|-88|-19.6|-91|-11.2|-83
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Fig. 9: BiMO-EMS-II performance comparison between the decision-making approaches with respect to .S, D and C' on the Small datasets,
as the residents’ profile v shifts in prioritization from C' to D. Results correspond to averages across 30 runs.

self-consumption. (d) Demand within the RE production curve
is limited and, due to limited demand outside the curve as well,
a lot of RE remains unutilized. Nonetheless, the optimal level
of self-consumption is achieved.

The above observations further-support the claim that BiMO-
EMS-II effectively utilizes energy flexibility towards achieving
high levels of self-consumption. Finally, the form of the
pricing schemes is as expected/described in section III-B: low
costs when RE is available (given the energy-consumption
distribution) and high costs when RE is unavailable.

3) Energy and Cost Savings: This section provides insights
regarding the potential daily savings of BiMO-EMS-II in
terms of energy and costs. Table V shows a comparison
in performance per objective in units and as a percentage,
between BiMO-EMS-II and the alternative of applying its
optimized dynamic pricing scheme without utilizing energy
flexibility, i.e., using the PRF approach. Overall, the results are
promising: The highest levels of self-consumption are achieved
in winter, regardless of the community size, with energy
savings ranging between 86-93%, or, equivalently, 94-306
kWh. These savings result from the sacrifice of 36-51% of the

residents’ preference satisfaction, however, their costs are also
reduced by 83-95% as compensation, i.e., the most heavily-
charged resident will pay 16-26 € less (note that the cost
savings would be different for a realistic price range compared
to the normalized ¢; € [0, 1], yet still analogous). Furthermore,
in half of the experiments, more than 80% in energy savings or,
equivalently, more than 75 kWh, is achieved. This performance
comes at a sacrifice in satisfaction ranging between 14-59%,
with the compensation in costs ranging between 82-96%.

Despite the promising results, the optimistic decision-
making approach is unrealistic for real-life applications of
BiMO-EMS-II. Next, we present the results obtained by
different decision-making approaches.

B. Decision Making Experiments

Fig. 9 presents a performance comparison of BIMO-EMS-II
subject to different decision-making approaches with respect
to S,D and C' on the Small datasets, as the community-
level residents’ profile v shifts in prioritization from costs
minimization (objective C') to preference dissatisfaction min-
imization (objective D). We draw the following conclusions:
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TABLE VI
LL PERFORMANCE OF NT, APT AND SPT APPLIED ON MOEA/D
AND NSGA-II, FOR ALL DATASETS, conv = 10~%. THE RESULTS
ARE AVERAGES OF 100 RUNS, AS DESCRIBED IN SECTION V-D.
T-TEST COMPARISONS: BETWEEN ADJACENT COLUMNS TO THE
LEFT/RIGHT SIDE. C-METRIC COMPARISONS: BETWEEN
ADJACENT COLUMNS

TABLE VII
LL PERFORMANCE OF PMX, UPMX AND UNI APPLIED ON
MOEA/D AND NSGA-II, FOR ALL DATASETS, conv = 107%. THE
RESULTS ARE AVERAGES OF 100 RUNS, AS DESCRIBED IN
SECTION V-E. T-TEST COMPARISONS: BETWEEN ADJACENT
COLUMNS TO THE LEFT/RIGHT SIDE. C-METRIC COMPARISONS:
BETWEEN ADJACENT COLUMNS

Metric | Dataset Algorithm Met | Data Algorithm
MOEA/D NSGA-IT ric | set MOEA/D NSGA-II
Statistical Analysis | T T|T Statist. An. | T T|T T
Sml NT | APT | SPT NT | SPT Sml PMX | UPMX | UNI PMX | UPMX | UNI
AUT | +(89.70(89.7490.13 | - | + | 87.89 | 88.03 AUT | + [ 89.85| 89.90 |[89.87| - |+ |87.60 | 88.13 [87.78 | +
HV WIN | +|88.23|88.30(88.32| - | + | 85.85 | 86.04 HV | WIN | + | 87.27 | 87.31 |87.23 |+ |+ |84.01 | 84.82 |84.30| +
(%) SPG - 190.66 | 90.68 | 90.91 | - | + | 89.04 | 89.30 (%) | SPG | +{90.35| 90.47 [90.42 | + | + | 88.35| 88.98 |88.98| -
SUM |+ [89.60|89.64|89.73 | - | + | 87.84 | 88.08 SUM | + |89.84| 89.88 [89.77 | + | + | 87.69 | 88.11 |87.69 | +
AUT - .8963(.8926 | .9088 | + | + | .8931 | .9181 AUT | + [.9033| .9096 |.8921 | + |+ |.8884 | .9008 |.9333 | +
A WIN - |.8194|.8168 | .8134 | - | + |.8074 | .8244 A | WIN | + [.8274| .8092 |.7905 | + | - | .8141 | .8044 |.8151| -
SPG - 1.9165|.9135| 9174 | - | + | .8632 | .8792 SPG | - |.9295| 9297 |.9159 | + | - | .8650 | .8635 |.8843 | +
SUM - | .8776|.8752 | .8741 | - | - | .8678 | .8680 SUM | - |.8892| .8856 |.8670 | + | - |.8669 | .8705 |.8959 | +
AUT | +]5.208[4.268 [4.706 | + | + | 1.418 | 1.354 AUT | + [ 6.463 | 4.808 | 13.55|+ |+ |1.372| 1.444 [3.611| +
Time WIN | +|5.111 4172|4427 | - | + | 1.444 | 1.372 T | WIN |+ |6.185| 5226 [13.25| + | + [1.344| 1.374 |3.529| +
(s) SPG +(7.337|5.689 |6.158 | - | + | 1.610 | 1.521 (s) | SPG |+ [8370| 6.552 1541 |+ |+ |1.388| 1.519 |3.648| +
SUM |+ | 495 |3.876|4.031 | - | +|1.440|1.373 SUM | + [5.652| 4.300 | 12.42 | + | - |1.413| 1.422 |3.734| +
AUT | + [36.49 | 45.09 + [25.08 | 55.87 AUT 62.67 [21.99 | + 48.93 [30.24 | +
38.54 | 48.53 | - - 138.74 | 44.39 +[25.10| 57.17
WIN +136.81 | 46.43 + | 25.53 | 51.46 WIN 57.05 | 27.11 | + 55.05 | 2245 | +
C 41.20 |45.28 | - C - |44.93 | 38.20 +[29.78 | 48.86
metric| SPG - 140.22 | 43.13 +[21.01 | 65.77 met. | SPG 66.08 |20.51 | + 3275 |51.74 | +
(%) 41.68 |45.17 | - (%) +[34.89| 49.35 +[26.12| 61.35
SUM | + |36.38 |46.24 + [23.48 | 56.72 SUM 57.57 |2455| + 4490 [28.94 | +
42.34 1 43.04 | - + (4890 | 32.45 - 136.69 | 44.14
Med NT | APT | SPT NT | SPT Med PMX | UPMX | UNI PMX | UPMX | UNI
AUT +191.29(91.41{91.52| - | - | 88.71 | 88.76 AUT | + [ 90.83| 90.93 [90.84 | + | + | 87.54 | 88.44 |88.07 | +
HV WIN | +]91.05]/91.13|91.14 | - | + | 88.63 | 88.94 HV | WIN | +[90.50| 90.72 [90.75| - | + | 87.40 | 88.46 |88.37| +
(%) SPG +190.30190.36 | 90.26 | - | + | 87.60 | 87.77 (%) | SPG | +|89.54| 89.59 [89.54| + | +|86.02| 87.03 |86.81 | +
SUM |+ [91.66|91.72 |91.54 | - | + | 89.09 | 89.26 SUM| - |91.27| 91.29 [91.20 | + | + | 88.10 | 88.79 |88.35| +
AUT | +.9304(.9235|.9437 | + | + | .9026 | .9468 AUT | - [.9269| .9284 |.9106 | + | - |.8829 | .8899 [.9221 | +
A WIN - 1.9311(.9293 | .9297 | - | + | .8494 | .8658 A | WIN |- [.9279| 9310 |.9145| + | + | .8582| .8439 |.8632 | +
SPG - |.8657|.8638 |.8636 | - | - |.9573|.9561 SPG | + |.8628 | .8560 |.8422| + | + |.8706 | .9632 |.9865 | +
SUM - 1.9183(.9133 | .9160 | - | + |.9051 | .9220 SUM| - | .9132| 9174 |.8959 | + | + | .8857 | .9049 |.9350 | +
AUT |+ |13.12]10.98 [ 12.15 | + | + | 22.75 | 20.69 AUT | + [17.24| 12.18 |34.04 | + | + |2.143| 2.285 [6.833 | +
Time WIN | +|16.90|12.98 | 14.52 | + | + | 25.27 | 23.70 T |WIN |+ |19.15| 14.76 [43.28 | + | + [2.452| 2.634 |7.246 | +
(s) SPG +[13.14]10.76 | 11.67 | + | + | 22.01 | 20.79 (s) | SPG |+ |16.46 | 12.42 3538 | + | +|2.054| 2.225 | 6.808 | +
SUM |+ [11.92/9.369 |10.15| - | + | 21.70 | 19.54 SUM | + | 15.48| 10.57 [29.59 | + | + [ 2.279| 2.322 |6.385| +
AUT | +[37.71]45.46 + (25315299 AUT 55.38 [27.50 | + 42.46 [32.49| +
40.76 | 48.98 | - - 14192 | 36.22 +|21.77| 57.67
WIN | +|35.32|50.44 +(19.45|70.08 WIN 45.69 |38.86 | - 33.82 |51.92 | +
C 4236 |47.14 | - C +[35.18 | 52.24 +[22.81| 64.08
metric| SPG +[35.61|47.24 +(21.24 | 45.49 met. | SPG 44.54 3581 - 32.80 |33.37] -
(%) 46.07 | 42.64 | - (%) + |51.46 | 33.04 +[19.45| 58.70
SUM | + |36.70 | 48.00 + [25.04 | 55.76 SUM 53.72 2847 | + 43.69 |32.73| -
46.43 | 43.00 | - - | 47.30| 36.35 + |24.38 | 55.61
Lrg NT | APT | SPT NT | SPT Lrg PMX | UPMX | UNI PMX | UPMX | UNI
AUT [ +]93.63]93.76[93.74 | - | - [91.49 | 91.50 AUT | - {93.25] 93.25 |93.14 | + |+ |90.17 | 91.16 |90.91 | +
HV WIN + | 88.08 | 88.41|88.01 | - | + | 85.00 | 85.41 HV | WIN | + [87.57| 88.04 |87.94| + | + |83.48| 84.85 |84.81| -
(%) SPG +[89.71|89.89|89.56 | - | +|86.32|86.67 (%) | SPG 89.22 | 89.25 |89.15| + | + | 85.26 | 86.14 |86.06 | +
SUM | +[92.76(92.89 (9297 | - | + |90.41 | 90.67 SUM| - [92.01| 91.98 [91.87 | + | + | 88.74 | 89.71 |89.66 | +
AUT | +[.9741].9650 | 9715 - | + |.9273].9646 AUT | - [.9666| .9679 |.9584 | + | - |.9081 | 9111 [.9640 | +
A WIN + |.8856|.8774|.8736 | - | +|.7981|.8154 A | WIN | - |.8753| .8782 |.8663 | + | +|.7636 | .7960 |.8170 | +
SPG +1.9123].8996 | .9083 | - | + | 84.13 | 88.06 SPG | - |.9042| .9066 |.8886 | + | + |.8686 | .8518 |.8732| +
SUM |+ [.9718|.9610 | 9811 | + | + |.8983 | .9298 SUM| - |.9620| .9589 |.9470 | + | - | .8758 | .8866 |.9051 | +
AUT | +]26.89(22.77 (2345 - | + | 38.40 | 32.96 AUT | + [32.27] 23.85 |74.09 | + |+ |3.682| 3.659 |12.45] +
Time WIN | +|36.28 | 31.00 | 31.64 | - | + | 43.67 | 36.18 T | WIN |+ |40.80| 28.86 [92.98 | + | + [4.192| 4.616 |13.21| +
(s) SPG +[36.38]30.68|31.97 | - | +|40.80|37.36 (s) | SPG |+ |37.52| 29.72 (88.00 | + | + |4.110 | 4.284 |12.55| +
SUM |+ |34.87|28.86|29.18 | - | + |45.00 | 39.37 SUM | + [36.72| 25.09 [81.29 | + | + | 3.874 | 4.194 | 12.33| +
AUT | +[35.21]50.03 +[22.73 | 58.86 AUT 5223 [32.17 | + 28.06 [49.63 | +
4473 | 45.16 | - - |45.29| 41.31 + (2431 56.88
WIN |+ |31.13|58.02 +[22.25 | 66.96 WIN 50.58 |37.40| - 36.79 |51.26 | +
C 48.30 | 43.62 | - C - 13836 52.24 +[12.84| 79.58
metric| SPG + [33.77] 52.63 + [ 19.89 | 66.96 met. | SPG 49.46 |37.15] - 36.69 |48.21 | +
(%) 50.11 [41.18 | - (%) - |41.88 | 46.96 +21.38| 66.72
SUM | + |32.31 |54.87 +[19.09 | 69.11 SUM 57.25 2741 + 29.94 |58.28 | +
44.89 |45.85 | - - 146.04 | 40.26 + [22.86 | 68.40
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(i) DMC (dyn. q) maintains a consistent performance as the
residents’ profile v varies, with a variation in performance of
up to: 15 kWh for S, 1.09 dissatisfaction-units for D and
4.88 € for C. Moreover, the performance of DMC (dyn. q)
approximates that of OPT, with a worst-case difference of
16 kWh, 0.73 dissatisfaction-units and 2.11 €. (ii) For the
RA approach, on all datasets but Spring, as cost reduction
C is increasingly prioritized, performance with regards to
S and C' is increasingly improved, while it monotonically
deteriorates for D. Conclusively, when the residents are given
full authority as LL DMs, the best solutions in terms of self-
consumption S lie at the extreme of pursuing cost reduction,
while for the Spring dataset a 25% interest in preference
satisfaction is optimal (Fig. (i) Sml_SPG (S)). (iii) For DMC
(dyn. q), for the Spring and Summer datasets, a LL profile
of v € [0.25,0.75] allows for full cooperation between the
UL and LL entities, while for other values of v the LL
DM resists full cooperation. Conclusively, for the Spring and
Summer datasets, satisfying UL preferences results in a greater
deviation from the LL preferences if the extreme profiles are
assumed. (iv) On all datasets and when preference satisfaction
D is fully prioritized (v = 1), as the approach becomes more
optimistic or cooperative, the performance with regards to .S
and C is significantly improved, while it deteriorates for D.
As a result, establishing cooperation is especially important in
these scenarios for the UL entity. This is further supported by
the resulting value of cooperation index ¢ for DMC (dyn. q),
which is consistently greater than 0.47, whereas approaches
with less cooperation or optimism deviate significantly in
performance with regards to S. Conclusively, a cooperation
level close to or above 50% offers a good balance between
UL and LL preference satisfaction in these scenarios, below
which the deviation from the UL preferences is more intense.
Overall, the results deem DMC (dyn. q) a viable alternative
to both the extreme UL approaches, given its approximation
of the optimistic approach in performance, provided that LL
preference information is known and cooperation between the
UL and LL entities is allowed.

C. Knowledge Transfer Experiments

The results in Table VI show that APT applied on MOEA/D
is consistently faster than SPT by 1-2 seconds, while per-
forming competitively on the Medium and Large datasets
for all other metrics listed in section V-F. On the Small
datasets, the larger difference in speed can be attributed to
the premature convergence of APT compared to SPT. NT is
significantly outperformed by APT on all datasets and for all
metrics, with the exception of A, which shows the positive
impact of Knowledge Transfer. Furthermore, APT significantly
outperforms all NSGA-II variations in terms of HV and the C-
metric. Regarding MOEA/D, APT is significantly faster than
SPT on the Medium datasets and, on the Large datasets, APT’s
PF is never dominated by more than 1% by SPT. Finally, the
control experiments for APT in the supplementary material
indicate that selecting alternative values for d can yield better
results in terms of HV and the C-metric, at the expense of
computational effort.

D. Crossover Experiments

Table VII compares the performance of the MOEA/D and
NSGA-II variants. Overall, UPMX applied on MOEA/D sig-
nificantly outperforms all MOEA/D alternatives by up to a sig-
nificant 0.1%, in terms of HV, with the difference increasing
by several units against NSGA-II alternatives. Regarding the
C-metric, UPMX and PMX perform competitively. Conclu-
sively, UPMX indicates a better capability of approximating
the true PF. In terms of A, NSGA-II outperforms MOEA/D
with all operators but UNI, which is also the best operator for
achieving a good A when using MOEA/D. Moreover, NSGA-
Il is extremely faster than MOEA/D, which is attributed to
its premature convergence, as supplementary-material Fig. 1
indicates. Finally, UPMX applied on NSGA-II consistently
achieves a significantly-better HV compared to NSGA-II
alternatives by up to 0.1%. In terms of the C-metric, however,
it loses its dominance to UNI on larger datasets.

VII. CONCLUSION

This study presented BiMO-EMS-II, an evolutionary bi-
level multi-objective approach for aggregator participation in
the day-ahead energy market, that focuses on optimizing self-
consumption through maximal utilization of energy flexibility
within an energy community, while accounting for the welfare
of the residents in terms of appliance-scheduling preference
satisfaction and energy costs reduction. BIMO-EMS-II, fitted
with an Adaptive Population Transfer strategy, an adapted
Uniform Partially Mapped Crossover operator and a Decision
Making heuristic with Cooperation, is shown to achieve re-
markable energy and cost savings at the expense of reasonable
resident satisfaction, offering quality solution trade-offs based
on varying decision-making approaches and residents’ profiles.
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